Materials and Infrastructures 2 -  - ebook

Materials and Infrastructures 2 ebook

0,0
579,99 zł

Opis

This volume presents the second half of a diverse collection of chapters in the field of materials and infrastructures in transport systems, which illustrate the technological and methodological innovations required to rise to the challenge of building more sustainable transport infrastructures for the future. The authors explore the potential of these sustainable solutions to improve the performance and efficiency of materials and infrastructures, with a reduced environmental impact and lower cost. Theoretical and practical case studies address a variety of topics including circular economy and sustainability, the impacts of climate change, durability, lifecycle, auscultation and the monitoring of infrastructures. This book provides transport researchers and professionals with a better understanding of the current and future trends in these innovative fields, enabling them to put into practice new technologies and methods of design and management, so that new solutions can become current practices to truly improve modern transport systems.

Ebooka przeczytasz w aplikacjach Legimi na:

Androidzie
iOS
czytnikach certyfikowanych
przez Legimi
Windows
10
Windows
Phone

Liczba stron: 400




Table of Contents

Cover

Title

Copyright

Preface

Acknowledgments

Introduction

I.1. Main findings

I.2. Conclusions

PART 4: Recycling and Sustainability Issues

28 Introduction to European COREPASOL Project on Harmonizing Cold Recycling Pavement Techniques

28.1. Introduction

28.2. Background of European project COREPASOL

28.3. Methods of cold-recycled asphalt specimen compaction

28.4. Experimental comparison of compaction methods

28.5. Publication policy

28.6. Acknowledgments

28.7. Bibliography

29 Technical Performance and Benefits of Recycling of Reclaimed Asphalt Containing Polymer-modified Binder in Premium Surface Layers

29.1. Introduction

29.2. State of the art on recycling of polymer modified asphalt (PMA)

29.3. Materials

29.4. Properties of extracted and blended binders

29.5. Performance of asphalt mixtures with RA containing polymer modified binder

29.6. Microscopy investigations of RA and asphalt mixes containing RA

29.7. Environmental and economic benefits

29.8. Conclusions and recommendations

29.9. Acknowledgments

29.10. Bibliography

30 Case Study: Increasing the Percentage of Recycled Asphalt

30.1. Introduction

30.2. Materials and test program

30.3. Results and analysis

30.4. Conclusions

30.5. Bibliography

31 Evaluation of Long-term Glass-grid Test Section using a Unique Method

31.1. Introduction

31.2. Methodology

31.3. Analysis

31.4. Conclusions and recommendations

31.5. Bibliography

32 Effect of Using of Reclaimed Asphalt and/or Lower Temperature Asphalt on the Availability of the Road Network

32.1. Introduction

32.2. Review of existing knowledge

32.3. Trial site

32.4. Laboratory testing

32.5. Assessment of lifecycle cost and carbon footprint

32.6. Conclusions

32.7. Acknowledgments

32.8. Bibliography

33 Brazilian Road Deterioration Test: Final Report

33.1. Introduction

33.2. Field analysis

33.3. Pavement deterioration analysis

33.4. Analysis model

33.5. Results

33.6. Conclusions

33.7. Acknowledgments

33.8. Bibliography

PART 5: Railways and Inland Navigation

34 Application of Different Methods for Rehabilitation of Existing Transition Zones on Old Railway Lines

34.1. Introduction

34.2. Transition zones

34.3. Case study: transition zones at the “Buna” bridge

34.4. Modeling

34.5. Construction process

34.6. Monitoring

34.7. Conclusions

34.8. Acknowledgments

34.9. Bibliography

35 CAPACITY4RAIL: Toward a Resilient, Innovative and High-capacity European Railway System for 2030/2050

35.1. Introduction

35.2. Project objectives

35.3. Project approach

35.4. Conclusions

35.5. Acknowledgments

36 Secondary Stiffness of Fastening Clips: Influence on the Behavior of the Railway Track Panel

36.1. Introduction

36.2. The railway track panel

36.3. The system “railway track–railway vehicle” as an ensemble of springs and dashpots

36.4. The static stiffness coefficient of the railway track in the vertical direction

36.5. Compatibility of clip and pad

36.6. Influence of pad stiffness on the stresses on ballast

36.7. Requirements for the fastenings and pads due to their role in the track panel

36.8. Secondary stiffness of the fastening clip and behavior of the track panel

36.9. Conclusions

36.10. Bibliography

37 A New Asset Management Approach for Inland Waterways

37.1. Overview waterway asset management

37.2. Maintenance measures and fairway availability

37.3. Fairway availability and transport costs

37.4. Pilot implementation and first results

37.5. Summary and outlook

37.6. Bibliography

38 3D Numerical Simulation of Convoy-generated Waves and Sediment Transport in Restricted Waterways

38.1. Introduction

38.2. Numerical model and governing equations

38.3. Suspended sediment transport

38.4. Boundary conditions

38.5. Computational procedures and hydrodynamical model results

38.6. Navigation influences on sediment transport

38.7. Conclusions

38.8. Bibliography

PART 6: Climate Resilient Roads

39 Potential Impact of Climate Change on Porous Asphalt with a Focus on Winter Damage

39.1. Introduction

39.2. Porous asphalt

39.3. Modeling of climate change impact

39.4. Conclusions

39.5. Acknowledgments

39.6. Bibliography

40 Risk Assessment of Highway Flooding in the Netherlands

40.1. Introduction

40.2. Background – climate change and the mission of Rijkswaterstaat

40.3. Development of methods to investigate vulnerability and to assess risks related to climate change

40.4. Summary of the “Blue spots” study

40.5. Flooding events and their frequency of occurrence

40.6. Consequences of flooding

40.7. Scoring effects of events

40.8. Analysis and interpretation

40.9. Risk evaluation (RIMAROCC step 4)

40.10. Conclusions

40.11. Recommendations

40.12. Implementation of results in the Netherlands and other European countries

40.13. Acknowledgments

40.14. Bibliography

41 Adaptation of the Road Infrastructure to Climate Change

41.1. Introduction

41.2. Strategies of adaptation to climate change

41.3. The AdSVIS projects

41.4. International cooperation

41.5. Conclusions

41.6. Bibliography

42 The Impacts of Climate Change on Pavement Maintenance in Queensland, Australia

42.1. Introduction

42.2. Climate change trends in Australia

42.3. HDM-III road deterioration model

42.4. Thornthwaite moisture index

42.5. Road environment and climate data of the study area

42.6. Economic impacts on pavement maintenance

42.7. Conclusions

42.8. Acknowledgments

42.9. Bibliography

43 Design Guideline for a Climate Projection Data Base and Specific Climate Indices for Roads: CliPDaR

43.1. Introduction

43.2. Data and methods

43.3. The ensemble approach

43.4. Results and discussion

43.5. Conclusions

43.6. Acknowledgments

43.7. Bibliography

List of Authors

Index

Contents for Volume 5A

End User License Agreement

Guide

Cover

Table of Contents

Begin Reading

Pages

C1

iii

iv

v

xv

xvi

xvii

xix

xx

xxi

xxii

xxiii

xxiv

1

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

75

76

77

78

79

80

81

82

83

84

85

86

87

89

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

G13

Research for Innovative Transports Set

coordinated byBernard Jacob

Volume 5B

Materials and Infrastructures 2

Edited by

Jean-Michel Torrenti

Francesca La Torre

First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd27-37 St George’s RoadLondon SW19 4EUUK

www.iste.co.uk

John Wiley & Sons, Inc.111 River StreetHoboken, NJ 07030USA

www.wiley.com

© ISTE Ltd 2016

The rights of Jean-Michel Torrenti and Francesca La Torre to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016939898

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-031-7

Preface

The transport sector is very much concerned about environmental adaptation and mitigation issues. Most of these are related to the objective of curbing GHG emission by 20% by 2020, alternative energy and energy savings, sustainable mobility and infrastructures, safety and security, etc. These objectives require the implementation of advanced research works, to develop new policies, and to adjust education and industrial innovations.

The theme and slogan of the Transport Research Arena held in Paris (TRA2014) were respectively: “Transport Solutions: From Research to Deployment” and “Innovate Mobility, Mobilise Innovation”. Top researchers and engineers, as well as private and public policy and decision–makers, were mobilized to identify and take the relevant steps to implement innovative solutions in transport. All surface modes were included, including walking and cycling, as well as cross modal aspects.

Policies, technologies and behaviors must be continually adapted to new constraints, such as climate change, the diminishing supply of fossil fuels, the economic crisis, the increased demand for mobility, safety and security, i.e. all the societal issues of the 21st Century. Transport infrastructures and materials, modal share, co-modality, urban planning, public transportation and mobility, safety and security, freight, logistics, ITS, energy and environment issues are the subject of extensive studies, research works and industrial innovations that are reported in this series of books.

This book is part of a set of six books called the Research for Innovative Transports set. This collection presents an update of the latest academic and applied research, case studies, best practices and user perspectives on transport carried out in Europe and worldwide. The presentations made during TRA2014 reflect on them. The TRAs are supported by the European Commission (DG-MOVE and DG-RTD), the Conference of European Road Directors (CEDR), and the modal European platforms, ERRAC (rail), ERTRAC (road), WATERBORNE, and ALICE (freight), and also by the European Construction Technology Platform (ECTP) and the European Transport Research Alliance (ETRA).

The volumes are made up of a selection of the best papers presented at TRA2014. All papers were peer reviewed before being accepted at the conference, and were then selected by the editors for the purpose of the present collection. Each volume contains complementary academic and applied inputs provided by highly qualified researchers, experts and professionals from all around the world.

Each volume of the series covers a strategic theme of TRA2014.

Volume 1, Energy and Environment, presents recent research works around the triptych “transports, energy and environment” that demonstrate that vehicle technologies and fuels can still improve, but it is necessary to prepare their implementation (electro-mobility), think about new services and involve enterprises. Mitigation strategies and policies are examined under different prospective scenarios, to develop and promote alternative fuels and technologies, multi-modality and services, and optimized transport chains whilst preserving climate and the environment. Evaluation and certification methodologies are key elements for assessing air pollution, noise and vibration from road, rail and maritime transports and their impacts on the environment. Different depollution technologies and mitigation strategies are also presented.

Volume 2, Towards Innovative Freight and Logistics, analyzes how to optimize freight movements and logistics, introduces new vehicle concepts, points out the governance and organization issues, and proposes an assessment framework.

Volumes 3 and 4 are complementary books covering the topic of traffic management and safety.

Volume 3, Traffic Management, starts with a survey of data collection processes and policies and then shows how traffic modeling and simulation may resolve major problems. Traffic management, monitoring and routing tools and experience are reported and the role of traffic information is highlighted. Impact assessments are presented.

Volume 4, Traffic Safety, describes the main road safety policies, accident analysis and modeling. Special focus is placed on the safety of vulnerable road users. The roles of infrastructure and ITS on safety are analyzed. Finally railway safety is focused upon.

Volume 5, Materials and Infrastructures, split into two sub-volumes, investigating geotechnical issues, and pavement materials’ characterization, innovative materials, technologies and processes, and introducing new techniques and approaches for auscultation and monitoring. Solutions to increase the durability of infrastructures and to improve maintenance and repair are shown, for recycling as well as for ensuring the sustainability of the infrastructures. Specific railways and inland navigation issues are addressed. A focus is put on climate resilient roads.

Volume 6, Urban Mobility and Public Transport, highlights possible innovations in order to improve transports and the quality of life in urban areas. Buses and two-wheelers could be a viable alternative in cities if they are safe and reliable. New methodologies are needed to assess urban mobility through new survey protocols, a better knowledge of user behavior or taking into account the value of travel for public transport. The interactions between urban transport and land planning are a key issue. However, these interactions have to be better assessed in order to propose scenarios for new policies.

Bernard JACOB, Chair of the TRA2014 Programme Committee

Jean-Bernard KOVARIK, Chair of the TRA2014 Management Committee March 2016

Acknowledgments

The European Commission, DG MOVE and RTD, the Conference of European Road Directors (CEDR), the European Road Transport Research Advisory Council (ERTRAC), the European Rail Research Advisory Council (ERRAC) and the European technology platform WATERBORNE-TP are acknowledged for their support and active contribution to the Programme Committee of the TRA2014, in charge of reviewing and selecting the papers presented at the conference, which forms the main input of this volume.

The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR) is acknowledged for having organized the TRA2014, in which 600 high-quality papers were presented, successfully.

Anne Beeldens, Pierre Marchal, Manuel Pereira, and Jon Krokeborg; coordinators of the topic on Materials and Infrastructure; all the other members of the Programme Committee; the reviewers who actively contributed to review and select the papers; and the authors who wrote them are acknowledged for their great job that produced the material for this volume.

Joëlle Labarrère, secretary of the Programme Committee of TRA2014, is acknowledged for her valuable help to the editors and for her support to prepare this volume.

Francesca La Torre

Professor Francesca La Torre is a Full Professor of roads, railways and airports at the University of Florence (Italy). She has been working in the field of transportation infrastructures for over 20 years. She obtained her PhD in 1998 at the University of Rome and she served as an assistant researcher at the University of Illinois at Urbana-Champaign (USA). She is a member of the EC Horizon 2020 advisory group for “Smart, Green and Integrated Transport” and the infrastructures representative for academia in ERTRAC.

Jean-Michel Torrenti

Jean Michel Torrenti is the R&D director of the Materials and Structures Department of IFSTTAR. He is also professor at Ecole Nationale des Ponts et Chaussées. His research concerns mechanics of concrete and its coupling with durability aspects: behavior of concrete at early age, creep, leaching. It is applied to model the behavior of structures such as bridges, nuclear power plants and nuclear waste storage. He is the co-author of several books concerning concrete and concrete structures.

Bernard Jacob

Bernard Jacob, chair of the Programme Committee of TRA2014, is deputy scientific director for transport, infrastructures and safety with IFSTTAR. His research works are in bridge and road safety, traffic loads on bridges, heavy vehicles and weigh-in-motion. He has coordinated a number of European and International research projects. He is an active member in several scientific and technical committees (OECD/ITF, PIARC, TRB, etc.) and provided expertise to the European Commission. He is professor at Ecole Nationale des Travaux Publics de l’Etat and the president of the International Society for WIM (ISWIM). He has published more than 100 scientific papers and edited 10 published volumes of international projects and conference proceedings.

Introduction

The infrastructures of the future will have to be sustainable, seamless, resilient and durable, will respect the principles of circular economy and will have to be easy to monitor and manage. New technologies are currently available or under development to reduce the carbon footprint of infrastructures and to increase the overall sustainability and recyclability of transport while maintaining the utility and value of the infrastructures. However, the impact of these new solutions will only be effective once these are thoroughly disseminated and extensively deployed.

This volume presents a series of the most promising solutions and aims at disseminating them to improve the performances and efficiency of materials and infrastructures, through a choice of updated papers from the TRA2014 Conference. Selection is primarily based on a quality criterion, also taking into account the geographical diversity of papers in order to restore the originality and richness of current research.

I.1. Main findings

The papers contained in this volume demonstrate how technological solutions and new design and management methodologies can be implemented in different surface transport modes (roads, railways and waterways) to increase transport sustainability by improving infrastructures design, maintenance, recyclability and management. Both theoretical research and practical case studies explore topics such as characterization of pavements, bridges and soils, use of recycled and warm mix asphalts as well as high-performance materials to increase durability or to reduce the noise impact.

New management techniques for improving infrastructure resilience both roads and railways is a very timely topic that has been selected by the European Commission and the U.S. Department of Transportation as the subject of further Euro-American cooperation. This topic is extensively covered in this volume for a number of different transport modes.

Road infrastructures are typically “low technology” structures but timely, cost-effective and seamless monitoring is essential for the implementation of effective maintenance and management concepts. New solutions for pavement and soil characterization are being developed by implementing seamless technologies. These range from well-established techniques, such as ground penetrating radars (GPR) and weigh-in-motion (WIM) techniques, to innovative radar remote sensing techniques.

The development of new pavement materials is always a key topic for road and airport engineers and the implementation of recycled materials and warm mix asphalt will be the standard solution of the future. However, there is still a strong need for understanding the long-term performance of these materials in situ and for developing performance models that the designers can implement for adopting these technologies. This volume will help the designers and road managers interested in implementing these solutions and presents different case studies that will make the potential users feel more confident.

It is interesting to observe that infrastructure performances often conflict and therefore solutions such as porous asphalt, that can be very effective for noise reduction, is more sensitive to climatic changes due to the effect of freeze-thaw cycles.

Durability and maintenance are core issues for road researchers with the final aim in mind that the road of the future will have to be “Forever Open”. However, local authorities are often faced with the issue of effective day to day maintenance. Infrastructure research too often focuses on highly trafficked motorways or primary road networks; therefore, it is extremely important that a research effort be specifically devoted to develop guidelines for the maintenance and repair of low volume roads, which represent a large portion of the whole road networks.

Railway and road infrastructures issues are usually tackled as separate but the recent work conducted by the joint roadmap for cross-modal transport infrastructure innovation toward a performing infrastructure has recently shown that a number of infrastructure research issues are cross-modal and therefore lessons can be learned across modes. This is clearly shown in this volume in which resilience to climatic changes covers both roads and railways and integrated modes are needed to achieve a truly resilient transport system.

This volume will be of interest not only for the research community and in higher education but also for professionals in the area of infrastructure design and management as well as economic and institutional decision makers. They will find state-of-the-art studies of key research issues, new advanced methods and illustrative case studies.

Volume 5 of the Research for Innovative Transports set is divided into two sub-volumes containing three parts each: five parts focus on roads but cover potentially cross-modal topics dealing with materials for infrastructures, auscultation and monitoring, durability and maintenance repair, recycling and sustainability issues and climate resilient roads. One part is specifically devoted to railways and inland navigation.

Sub-volume 1 contains parts 1–3. Part 1 deals with geotechnical issues and pavement materials’ characterization. In this part researchers and practitioners can find new test methods and materials characterization techniques for non-conventional materials including recycled asphalt mixtures, warm mix asphalts but also fiber reinforced concrete materials.

Part 2 presents novel and high-tech solutions to monitor and assess pavement conditions to assist road authorities in this key management activity. These techniques include 3D mapping, remote sensing, GPR evaluation of pavement structural capacity and WIM monitoring solutions. The reader will also find a highly specialized study on integrating the electrical supply cables for public transport, for creating an electromagnetic induction field, in a prefabricated concrete slab.

Part 3 deals with the key road management issues of durability and maintenance repair. The recurrent theme of noise reduction has been tackled and designers and road authorities will be able to consider and compare the effectiveness of different solutions including non-conventional materials. Attention is also paid to noise issues in non-conventional analysis locations as level intersections in urban and rural areas. A very important issue for road managers is pothole repair. The guidelines developed in the POTHOLE project will be extremely helpful for local authorities looking for effective maintenance solutions.

Sub-volume 2 contains parts 4–6. Part 4 addresses recycling and sustainability issues, presenting case studies and full-scale tests. Asphalt recycling is a core issue for reducing the carbon footprint of transportation infrastructure. Road administrations and designers will find a very interesting overview of three transnational research projects on this topic as well as a case study from Slovenia.

Part 5 analyzes railways and inland navigation issues. New concepts for low maintenance and resilient infrastructure as well as optimizing operation and intermodal integration within the global transport system are proposed for technicians dealing with resilient infrastructure in any transport mode. Highly specialized railway experts will find studies on clip stiffness and on new innovative solutions for transition zones between the “normal” open tracks and “rigid” track sections. Waterways researchers will find an interesting new management approach to deal with suspended sediments.

Part 6 focuses on a key infrastructure issue of the future: resilience to extreme climatic conditions. Input from three continents (Australia, Europe and North America) highlight that this global issue needs trans-national solutions. An interesting overview of two transnational projects (RIMAROCC and SWAMP) introduces the topic followed by specific solutions adopted by single countries. The effect of climatic changes on pavements is assessed to answer questions of specialized pavement engineers.

I.2. Conclusions

This volume provides an insight on research, best practices and transport policies with a focus on state-of the-art advances in the fields of infrastructures and materials. The progress made in the implementation of new materials in pavement design as well as the evolution in the process of data collection and assessment, modeling and management, assisting academics, transport professionals, practitioners and decision makers to a better understanding of the current and future trends are demonstrated.

Future infrastructure monitoring techniques will be seamless, and this volume shows that there is a significant shift of the research world in this direction. These solutions now need to become current practices to really improve the transport system.

Reducing the infrastructure carbon footprint and increasing its resilience is possible but road managers and designers need to have design and management tools as well as case studies that will allow them to gain more confidence in the adoption of new and less impacting solutions.

PART 4Recycling and Sustainability Issues

28Introduction to European COREPASOL Project on Harmonizing Cold Recycling Pavement Techniques

Within the actual transnational road research program of the Conference of European Directors of Roads, the COREPASOL (Characterization of Advanced Cold-Recycled Bitumen Stabilized Pavement Solutions) project will be supported in the period 2013–2014. This project is realized by an international team from Czech Technical University in Prague, University of Kassel, University College Dublin, Laboratório Nacional de Engenharia Civil, I.P. (LNEC) and industrial partner Wirtgen GmbH. The project focuses mainly on harmonizing mix design of cold-recycled bitumen-stabilized materials following the existing scientific and engineering experience and approaches. The key objective in this relation is to develop and recommend comprehensive mix design and characterization by studying compaction methods, curing procedures and performance tests. Furthermore, the overall focus of the COREPASOL project’s partial results is on the comparison of compaction methods used for the preparation of test specimens for cold-recycled mixes.

28.1. Introduction

Expected yearly worldwide demand for road rehabilitation works concerns about 1.7 million km of roads. This creates on the one hand a large need for natural resources used and on the other hand bears significant potential for the reuse of existing pavement materials and the focus on recycling techniques. Following the key characteristic of asphalt pavement being 100% recyclable, suitable techniques should be continuously developed and supported. Nevertheless, in the development on pavement structures and new technical solutions enhancing higher recyclability of existing structures, increased focus on environmental aspects, sustainability, durability and the protection of health and safety has been stressed during past decades. The use of recycled materials in this respect is a key strategy in developing sustainable road construction practices. Cold recycling techniques, especially if done in-place, can be seen as a highly progressive approach that addresses all of the stated targets for road construction – safe road surface conditions, high bearing capacity and durable pavements.

Cold recycling techniques are generally available and well known; nevertheless, they differ strongly in terms of utilization ratio, state of the art and public interest across Europe. Technical harmonization and European-wide guidance for best practice and effective performance design are needed. This includes guidance for designers as well. Maintaining the good infrastructure quality across Europe is one essential backbone to the performance of the European economy. Nowadays, there is no such harmonized mix design. Cold recycling, of course, is well known, but large differences in techniques and national states of the art were documented in the European-funded Direct-Mat project. Predominantly in-place recycling techniques are used with the application of solely bituminous binder or its combination with a hydraulic binder (cement and lime), especially for increased pavement bearing capacity. The mix design is usually based on defining optimum water content using the modified Proctor standard test and analyzing mechanical properties (compressive strength or indirect tensile strength (ITS)) after odd curing periods.

Cold recycling can be seen as a technology where several benefits and added values are linked – natural resources can be reduced, energy consumption decreased, road infrastructure protected from excessive construction-related transport and rehabilitation works can be shortened. Simultaneously, using this technology, the multiple recycling of already once recycled roads bears other potential and beneficial effects with similar advantages as described previously. The question is only the rate of old binder activation. If proper mix design is applied and suitable binders are used including activating the bituminous binder in reclaimed material, the new structure will lead to increased bearing capacity and improved pavement durability. Despite these facts, not more than 35% of reclaimed asphalt is reused by cold recycling.

28.2. Background of European project COREPASOL

Following the focus of the Conference of European Directors of Roads (CEDR) Transnational Road Research Programme 2012, COREPASOL (Characterization of Advanced Cold-Recycled Bitumen Stabilized Pavement Solutions) concentrates on research objectives defined within this programme for optimizing the recycling of pavements. Assessing European cold recycling asphalt pavement techniques and specific national designs and characterization should lead to suitable harmonization and introduction of a performance-based design concept applicable in most European countries. This should further increase the potential in using this set of techniques and allow an expert comparison of approaches done in different parts of Europe.