899,99 zł
New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of Magnetic Resonance Imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: * New chapter dedicated to parallel imaging * New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications * Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present * Valuable improvements throughout with respect to equations, formulas, and text * New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of Magnetic Resonance Imaging.
Ebooka przeczytasz w aplikacjach Legimi na:
Liczba stron: 1718
Cover
Title page
Copyright page
Foreword to the Second Edition
Foreword to the First Edition
Dedication
Preface to the Second Edition
Preface to the First Edition
Acknowledgments
Acknowledgments to the First Edition
Chapter 1: Magnetic Resonance Imaging
1.1 Magnetic Resonance Imaging: The Name
1.2 The Origin of Magnetic Resonance Imaging
1.3 A Brief Overview of MRI Concepts
Chapter 2: Classical Response of a Single Nucleus to a Magnetic Field
2.1 Magnetic Moment in the Presence of a Magnetic Field
2.2 Magnetic Moment with Spin: Equation of Motion
2.3 Precession Solution: Phase
Chapter 3: Rotating Reference Frames and Resonance
3.1 Rotating Reference Frames
3.2 The Rotating Frame for an RF Field
3.3 Resonance Condition and the RF Pulse
Chapter 4: Magnetization, Relaxation, and the Bloch Equation
4.1 Magnetization Vector
4.2 Spin-Lattice Interaction and Regrowth Solution
4.3 Spin-Spin Interaction and Transverse Decay
4.4 Bloch Equation and Static-Field Solutions
4.5 The Combination of Static and RF Fields
Chapter 5: The Quantum Mechanical Basis of Precession and Excitation
5.1 Discrete Angular Momentum and Energy
5.2 Quantum Operators and the Schrödinger Equation
5.3 Quantum Derivation of Precession
5.4 Quantum Derivation of RF Spin Tipping
Chapter 6: The Quantum Mechanical Basis of Thermal Equilibrium and Longitudinal Relaxation
6.1 Boltzmann Equilibrium Values
6.2 Quantum Basis of Longitudinal Relaxation
6.3 The RF Field
Chapter 7: Signal Detection Concepts
7.1 Faraday Induction
7.2 The MRI Signal and the Principle of Reciprocity
7.3 Signal from Precessing Magnetization
7.4 Dependence on System Parameters
Chapter 8: Introductory Signal Acquisition Methods
8.1 Free Induction Decay and
8.2 The Spin Echo and
T
2
Measurements
8.3 Repeated RF Pulse Structures
8.4 Inversion Recovery and
T
1
Measurements
8.5 Spectroscopy and Chemical Shift
Chapter 9: One-Dimensional Fourier Imaging,
k
-Space, and Gradient Echoes
9.1 Signal and Effective Spin Density
9.2 Frequency Encoding and the Fourier Transform
9.3 Simple Two-Spin Example
9.4 Gradient Echo and
k
-Space Diagrams
9.5 Gradient Directionality and Nonlinearity
Chapter 10: Multi-Dimensional Fourier Imaging and Slice Excitation
10.1 Imaging in More Dimensions
10.2 Slice Selection with Boxcar Excitations
10.3 2D Imaging and
k
-Space
10.4 3D Volume Imaging
10.5 Chemical Shift Imaging
Chapter 11: The Continuous and Discrete Fourier Transforms
11.1 The Continuous Fourier Transform
11.2 Continuous Transform Properties and Phase Imaging
11.3 Fourier Transform Pairs
11.4 The Discrete Fourier Transform
11.5 Discrete Transform Properties
Chapter 12: Sampling and Aliasing in Image Reconstruction
12.1 Infinite Sampling, Aliasing, and the Nyquist Criterion
12.2 Finite Sampling, Image Reconstruction, and the Discrete Fourier Transform
12.3 RF Coils, Noise, and Filtering
12.4 Nonuniform Sampling
Chapter 13: Filtering and Resolution in Fourier Transform Image Reconstruction
13.1 Review of Fourier Transform Image Reconstruction
13.2 Filters and Point Spread Functions
13.3 Gibbs Ringing
13.4 Spatial Resolution in MRI
13.5 Hanning Filter and
Decay Effects
13.6 Zero Filled Interpolation, Sub-Voxel Fourier Transform Shift Concepts, and Point Spread Function Effects
13.7 Partial Fourier Imaging and Reconstruction
13.8 Digital Truncation
Chapter 14: Projection Reconstruction of Images
14.1 Radial
k
-Space Coverage
14.2 Sampling Radial
k
-Space and Nyquist Limits
14.3 Projections and the Radon Transform
14.4 Methods of Projection Reconstruction with Radial Coverage
14.5 Three-Dimensional Radial
k
-Space Coverage
14.6 Radial Coverage Versus Cartesian
k
-Space Coverage
Chapter 15: Signal, Contrast, and Noise
15.1 Signal and Noise
15.2 SNR Dependence on Imaging Parameters
15.3 Contrast, Contrast-to-Noise, and Visibility
15.4 Contrast Mechanisms in MRI and Contrast Maximization
15.5 Contrast Enhancement with
T
1
-Shortening Agents
15.6 Partial Volume Effects, CNR, and Resolution
15.7 SNR in Magnitude and Phase Images
15.8 SNR as a Function of Field Strength
Chapter 16: A Closer Look at Radiofrequency Pulses
16.1 Relating RF Fields and Measured Spin Density
16.2 Implementing Slice Selection
16.3 Calibrating the RF Field
16.4 Solutions of the Bloch Equations
16.5 Spatially Varying RF Excitation
16.6 RF Pulse Characteristics: Flip Angle and RF Power
16.7 Spin Tagging
Chapter 17: Water/Fat Separation Techniques
17.1 The Effect of Chemical Shift in Imaging
17.2 Selective Excitation and Tissue Nulling
17.3 Multiple Point Water/Fat Separation Methods
Chapter 18: Fast Imaging in the Steady State
18.1 Short-
T
R
, Spoiled, Gradient Echo Imaging
18.2 Short-
T
R
, Coherent, Gradient Echo Imaging
18.3 SSFP Signal Formation Mechanisms
18.4 Understanding Spoiling Mechanisms
Chapter 19: Segmented
k
-Space and Echo Planar Imaging
19.1 Reducing Scan Times
19.2 Segmented
k
-Space: Phase Encoding Multiple
k-
Space Lines per RF Excitation for Gradient Echo Imaging
19.3 Echo Planar Imaging (EPI)
19.4 Alternate Forms of Conventional EPI
19.5 Artifacts and Phase Correction
19.6 Spiral Forms of EPI
19.7 An Overview of EPI Properties
19.8 Phase Encoding Between Spin Echoes and Segmented Acquisition
19.9 Mansfield 2D to 1D Transformation Insight
Chapter 20: Magnetic Field Inhomogeneity Effects and
Dephasing
20.1 Image Distortion Due to Field Effects
20.2 Echo Shifting Due to Field Inhomogeneities in Gradient Echo Imaging
20.3 Methods for Minimizing Distortion and Echo Shifting Artifacts
20.4 Empirical
20.5 Predicting
for Random Susceptibility Producing Structures
20.6 Correcting Geometric Distortion
Chapter 21: Random Walks, Relaxation, and Diffusion
21.1 Simple Model for Intrinsic
T
2
21.2 Simple Model for Diffusion
21.3 Carr-Purcell Mechanism
21.4 Meiboom-Gill Improvement
21.5 The Bloch-Torrey Equation
21.6 Some Practical Examples of Diffusion Imaging
Chapter 22: Spin Density,
T
1
, and
T
2
Quantification Methods in MR Imaging
22.1 Simplistic Estimates of
ρ
0
,
T
1
, and
T
2
22.2 Estimating
T
1
and
T
2
from Signal Ratio Measurements
22.3 Estimating
T
1
and
T
2
from Multiple Signal Measurements
22.4 Other Methods for Spin Density and
T
1
Estimation
22.5 Practical Issues Related to
T
1
and
T
2
Measurements
22.6 Calibration Materials for Relaxation Time Measurements
Chapter 23: Motion Artifacts and Flow Compensation
23.1 Effects on Spin Phase from Motion Along the Read Direction
23.2 Velocity Compensation Along the Read and Slice Select Directions
23.3 Ghosting Due to Periodic Motion
23.4 Velocity Compensation along Phase Encoding Directions
23.5 Maximum Intensity Projection
Chapter 24: MR Angiography and Flow Quantification
24.1 Inflow or Time-of-Flight (TOF) Effects
24.2 TOF Contrast, Contrast Agents, and Spin Density/
-Weighting
24.3 Phase Contrast and Velocity Quantification
24.4 Flow Quantification
Chapter 25: Magnetic Properties of Tissues
25.1 Paramagnetism, Diamagnetism, and Ferromagnetism
25.2 Permeability and Susceptibility: The
Field
25.3 Objects in External Fields: The Lorentz Sphere
25.4 Susceptibility Imaging
25.5 Brain Functional MRI and the BOLD Phenomenon
25.6 Signal Behavior in the Presence of Deoxygenated Blood
Chapter 26: Sequence Design, Artifacts, and Nomenclature
26.1 Sequence Design and Imaging Parameters
26.2 Early Spin Echo Imaging Sequences
26.3 Fast Short
T
R
Imaging Sequences
26.4 Imaging Tricks and Image Artifacts
26.5 Sequence Adjectives and Nomenclature
Chapter 27: Introduction to MRI Coils and Magnets
27.1 The Circular Loop as an Example
27.2 The Main Magnet Coil
27.3 Linearly Varying Field Gradients
27.4 RF Transmit and Receive Coils
Chapter 28: Parallel Imaging
28.1 Coil Signals, Their Images, and a One-Dimensional Test Case
28.2 Parallel Imaging with an
x
-Space Approach
28.3 Parallel Imaging with a
k
-Space Approach
28.4 Noise and the
g
-Factor
28.5 Additional Topics in Acquisition and Reconstruction
Appendix A: Electromagnetic Principles
A.1 Maxwell’s Equations
A.2 Faraday’s Law of Induction
A.3 Electromagnetic Forces
A.4 Dipoles in an Electromagnetic Field
A.5 Formulas for Electromagnetic Energy
A.6 Static Magnetic Field Calculations
Appendix B: Statistics
B.1 Accuracy Versus Precision
B.2 The Gaussian Probability Distribution
B.3 Type I and Type II Errors
B.4 Sum over Several Random Variables
B.5 Rayleigh Distribution
B.6 Experimental Validation of Noise Distributions
Appendix C: Imaging Parameters to Accompany Figures
Index
End User License Agreement
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!
Lesen Sie weiter in der vollständigen Ausgabe!