Magnetic Resonance Imaging - Robert W. Brown - ebook

Magnetic Resonance Imaging ebook

Robert W. Brown

0,0
899,99 zł

Opis

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of Magnetic Resonance Imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: * New chapter dedicated to parallel imaging * New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications * Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present * Valuable improvements throughout with respect to equations, formulas, and text * New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of Magnetic Resonance Imaging.

Ebooka przeczytasz w aplikacjach Legimi na:

Androidzie
iOS
czytnikach certyfikowanych
przez Legimi
Windows
10
Windows
Phone

Liczba stron: 1718




CONTENTS

Cover

Title page

Copyright page

Foreword to the Second Edition

Foreword to the First Edition

Dedication

Preface to the Second Edition

Preface to the First Edition

Acknowledgments

Acknowledgments to the First Edition

Chapter 1: Magnetic Resonance Imaging

1.1 Magnetic Resonance Imaging: The Name

1.2 The Origin of Magnetic Resonance Imaging

1.3 A Brief Overview of MRI Concepts

Chapter 2: Classical Response of a Single Nucleus to a Magnetic Field

2.1 Magnetic Moment in the Presence of a Magnetic Field

2.2 Magnetic Moment with Spin: Equation of Motion

2.3 Precession Solution: Phase

Chapter 3: Rotating Reference Frames and Resonance

3.1 Rotating Reference Frames

3.2 The Rotating Frame for an RF Field

3.3 Resonance Condition and the RF Pulse

Chapter 4: Magnetization, Relaxation, and the Bloch Equation

4.1 Magnetization Vector

4.2 Spin-Lattice Interaction and Regrowth Solution

4.3 Spin-Spin Interaction and Transverse Decay

4.4 Bloch Equation and Static-Field Solutions

4.5 The Combination of Static and RF Fields

Chapter 5: The Quantum Mechanical Basis of Precession and Excitation

5.1 Discrete Angular Momentum and Energy

5.2 Quantum Operators and the Schrödinger Equation

5.3 Quantum Derivation of Precession

5.4 Quantum Derivation of RF Spin Tipping

Chapter 6: The Quantum Mechanical Basis of Thermal Equilibrium and Longitudinal Relaxation

6.1 Boltzmann Equilibrium Values

6.2 Quantum Basis of Longitudinal Relaxation

6.3 The RF Field

Chapter 7: Signal Detection Concepts

7.1 Faraday Induction

7.2 The MRI Signal and the Principle of Reciprocity

7.3 Signal from Precessing Magnetization

7.4 Dependence on System Parameters

Chapter 8: Introductory Signal Acquisition Methods

8.1 Free Induction Decay and

8.2 The Spin Echo and

T

2

Measurements

8.3 Repeated RF Pulse Structures

8.4 Inversion Recovery and

T

1

Measurements

8.5 Spectroscopy and Chemical Shift

Chapter 9: One-Dimensional Fourier Imaging,

k

-Space, and Gradient Echoes

9.1 Signal and Effective Spin Density

9.2 Frequency Encoding and the Fourier Transform

9.3 Simple Two-Spin Example

9.4 Gradient Echo and

k

-Space Diagrams

9.5 Gradient Directionality and Nonlinearity

Chapter 10: Multi-Dimensional Fourier Imaging and Slice Excitation

10.1 Imaging in More Dimensions

10.2 Slice Selection with Boxcar Excitations

10.3 2D Imaging and

k

-Space

10.4 3D Volume Imaging

10.5 Chemical Shift Imaging

Chapter 11: The Continuous and Discrete Fourier Transforms

11.1 The Continuous Fourier Transform

11.2 Continuous Transform Properties and Phase Imaging

11.3 Fourier Transform Pairs

11.4 The Discrete Fourier Transform

11.5 Discrete Transform Properties

Chapter 12: Sampling and Aliasing in Image Reconstruction

12.1 Infinite Sampling, Aliasing, and the Nyquist Criterion

12.2 Finite Sampling, Image Reconstruction, and the Discrete Fourier Transform

12.3 RF Coils, Noise, and Filtering

12.4 Nonuniform Sampling

Chapter 13: Filtering and Resolution in Fourier Transform Image Reconstruction

13.1 Review of Fourier Transform Image Reconstruction

13.2 Filters and Point Spread Functions

13.3 Gibbs Ringing

13.4 Spatial Resolution in MRI

13.5 Hanning Filter and

Decay Effects

13.6 Zero Filled Interpolation, Sub-Voxel Fourier Transform Shift Concepts, and Point Spread Function Effects

13.7 Partial Fourier Imaging and Reconstruction

13.8 Digital Truncation

Chapter 14: Projection Reconstruction of Images

14.1 Radial

k

-Space Coverage

14.2 Sampling Radial

k

-Space and Nyquist Limits

14.3 Projections and the Radon Transform

14.4 Methods of Projection Reconstruction with Radial Coverage

14.5 Three-Dimensional Radial

k

-Space Coverage

14.6 Radial Coverage Versus Cartesian

k

-Space Coverage

Chapter 15: Signal, Contrast, and Noise

15.1 Signal and Noise

15.2 SNR Dependence on Imaging Parameters

15.3 Contrast, Contrast-to-Noise, and Visibility

15.4 Contrast Mechanisms in MRI and Contrast Maximization

15.5 Contrast Enhancement with

T

1

-Shortening Agents

15.6 Partial Volume Effects, CNR, and Resolution

15.7 SNR in Magnitude and Phase Images

15.8 SNR as a Function of Field Strength

Chapter 16: A Closer Look at Radiofrequency Pulses

16.1 Relating RF Fields and Measured Spin Density

16.2 Implementing Slice Selection

16.3 Calibrating the RF Field

16.4 Solutions of the Bloch Equations

16.5 Spatially Varying RF Excitation

16.6 RF Pulse Characteristics: Flip Angle and RF Power

16.7 Spin Tagging

Chapter 17: Water/Fat Separation Techniques

17.1 The Effect of Chemical Shift in Imaging

17.2 Selective Excitation and Tissue Nulling

17.3 Multiple Point Water/Fat Separation Methods

Chapter 18: Fast Imaging in the Steady State

18.1 Short-

T

R

, Spoiled, Gradient Echo Imaging

18.2 Short-

T

R

, Coherent, Gradient Echo Imaging

18.3 SSFP Signal Formation Mechanisms

18.4 Understanding Spoiling Mechanisms

Chapter 19: Segmented

k

-Space and Echo Planar Imaging

19.1 Reducing Scan Times

19.2 Segmented

k

-Space: Phase Encoding Multiple

k-

Space Lines per RF Excitation for Gradient Echo Imaging

19.3 Echo Planar Imaging (EPI)

19.4 Alternate Forms of Conventional EPI

19.5 Artifacts and Phase Correction

19.6 Spiral Forms of EPI

19.7 An Overview of EPI Properties

19.8 Phase Encoding Between Spin Echoes and Segmented Acquisition

19.9 Mansfield 2D to 1D Transformation Insight

Chapter 20: Magnetic Field Inhomogeneity Effects and

Dephasing

20.1 Image Distortion Due to Field Effects

20.2 Echo Shifting Due to Field Inhomogeneities in Gradient Echo Imaging

20.3 Methods for Minimizing Distortion and Echo Shifting Artifacts

20.4 Empirical

20.5 Predicting

for Random Susceptibility Producing Structures

20.6 Correcting Geometric Distortion

Chapter 21: Random Walks, Relaxation, and Diffusion

21.1 Simple Model for Intrinsic

T

2

21.2 Simple Model for Diffusion

21.3 Carr-Purcell Mechanism

21.4 Meiboom-Gill Improvement

21.5 The Bloch-Torrey Equation

21.6 Some Practical Examples of Diffusion Imaging

Chapter 22: Spin Density,

T

1

, and

T

2

Quantification Methods in MR Imaging

22.1 Simplistic Estimates of

ρ

0

,

T

1

, and

T

2

22.2 Estimating

T

1

and

T

2

from Signal Ratio Measurements

22.3 Estimating

T

1

and

T

2

from Multiple Signal Measurements

22.4 Other Methods for Spin Density and

T

1

Estimation

22.5 Practical Issues Related to

T

1

and

T

2

Measurements

22.6 Calibration Materials for Relaxation Time Measurements

Chapter 23: Motion Artifacts and Flow Compensation

23.1 Effects on Spin Phase from Motion Along the Read Direction

23.2 Velocity Compensation Along the Read and Slice Select Directions

23.3 Ghosting Due to Periodic Motion

23.4 Velocity Compensation along Phase Encoding Directions

23.5 Maximum Intensity Projection

Chapter 24: MR Angiography and Flow Quantification

24.1 Inflow or Time-of-Flight (TOF) Effects

24.2 TOF Contrast, Contrast Agents, and Spin Density/

-Weighting

24.3 Phase Contrast and Velocity Quantification

24.4 Flow Quantification

Chapter 25: Magnetic Properties of Tissues

25.1 Paramagnetism, Diamagnetism, and Ferromagnetism

25.2 Permeability and Susceptibility: The

Field

25.3 Objects in External Fields: The Lorentz Sphere

25.4 Susceptibility Imaging

25.5 Brain Functional MRI and the BOLD Phenomenon

25.6 Signal Behavior in the Presence of Deoxygenated Blood

Chapter 26: Sequence Design, Artifacts, and Nomenclature

26.1 Sequence Design and Imaging Parameters

26.2 Early Spin Echo Imaging Sequences

26.3 Fast Short

T

R

Imaging Sequences

26.4 Imaging Tricks and Image Artifacts

26.5 Sequence Adjectives and Nomenclature

Chapter 27: Introduction to MRI Coils and Magnets

27.1 The Circular Loop as an Example

27.2 The Main Magnet Coil

27.3 Linearly Varying Field Gradients

27.4 RF Transmit and Receive Coils

Chapter 28: Parallel Imaging

28.1 Coil Signals, Their Images, and a One-Dimensional Test Case

28.2 Parallel Imaging with an

x

-Space Approach

28.3 Parallel Imaging with a

k

-Space Approach

28.4 Noise and the

g

-Factor

28.5 Additional Topics in Acquisition and Reconstruction

Appendix A: Electromagnetic Principles

A.1 Maxwell’s Equations

A.2 Faraday’s Law of Induction

A.3 Electromagnetic Forces

A.4 Dipoles in an Electromagnetic Field

A.5 Formulas for Electromagnetic Energy

A.6 Static Magnetic Field Calculations

Appendix B: Statistics

B.1 Accuracy Versus Precision

B.2 The Gaussian Probability Distribution

B.3 Type I and Type II Errors

B.4 Sum over Several Random Variables

B.5 Rayleigh Distribution

B.6 Experimental Validation of Noise Distributions

Appendix C: Imaging Parameters to Accompany Figures

Index

End User License Agreement

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!

Lesen Sie weiter in der vollständigen Ausgabe!