Lebensfahrt eines deutschen Erfinders - Carl Friedrich Benz - ebook

Lebensfahrt eines deutschen Erfinders ebook

Carl Friedrich Benz

0,0

Opis

Carl Friedrich Benz war ein deutscher Ingenieur und Automobilpionier. Sein Benz Patent-Motorwagen Nummer 1 von 1885 gilt als erstes modernes Automobil. Dies sind seine Erinnerungen, aufgezeichnet in einer detaillierten Autobiographie.

Ebooka przeczytasz w aplikacjach Legimi na:

Androidzie
iOS
czytnikach certyfikowanych
przez Legimi
czytnikach Kindle™
(dla wybranych pakietów)
Windows
10
Windows
Phone

Liczba stron: 188

Odsłuch ebooka (TTS) dostepny w abonamencie „ebooki+audiobooki bez limitu” w aplikacjach Legimi na:

Androidzie
iOS
Oceny
0,0
0
0
0
0
0



Lebensfahrt eines deutschen Erfinders

Die Erfindung des Automobils

Erinnerungen eines Achtzigjährigen

Carl Benz

Inhalt:

Die Entstehung und Technik des Motorwagens

Lebensfahrt eines deutschen Erfinders

Im Feuerschein der Dorfschmiede

Vater und Mutter

Der kleine Carl

Ferienfreuden

Auf dem Gymnasium

»Frisch blickt' auch ich als junger Bursch ins Leben,

Keck hatt' ich mir gesteckt das höchste Ziel.«

Wanderjahre

Auf dem Knochenschüttler

Eigene Heim- und Werkstätte

Der schönste Silvesterabend

Widerstände

Der neue Zweitaktmotor

Von der Reißbrettskizze zum lebendigen Motorwagen

Die ersten Fahrten

Die ersten Zeitungsberichte

Das Ringen um des Wagens Zukunft

Der neue Wagen vor der Polizeischranke

Wir fahren in die Welt!

Der neue Wagen holt sich auf der Münchener Ausstellung 1888 die Große Goldene Medaille

Die ersten Käufer aus Frankreich, England und Amerika stellen sich ein

Der Einbau der dreiteiligen Achse

Wie es am Anfang auf den Landstraßen spukte

Die ersten Käufer aus Deutschland, Ungarn und Böhmen

Gedenke, daß du ein Deutscher bist

Das Emporblühen der deutschen Kraftwagenindustrie

Der Kraftwagen als Kulturgut

Die Automobil-»Erfinder«

Der 80. Geburtstag (26. November 1924)

Sportsfreuden

Münchener Jubeltage

Rückblick und Aufblick

Tafeln

Bildanhang

Lebensfahrt eines deutschen Erfinders, C. F. Benz

Jazzybee Verlag Jürgen Beck

Loschberg 9

86450 Altenmünster

ISBN: 9783849605087

www.jazzybee-verlag.de

[email protected]

Die Entstehung und Technik des Motorwagens

Fahrzeug mit motorischem Antrieb, im engeren Sinn (Automobil, Autocar, Autocab) ein von Schienen unabhängiges, motorisch angetriebenes Fahrzeug. Nach der Art der motorischen Kraft unterscheidet man Benzinwagen, Dampfwagen und elektrische Wagen; nach der Wagenform: Dampfkalesche, -Kutsche, -Omnibus etc., Duc, Coupé, Phaethon, Tonneau, Landaulette, Limousine etc.; nach dem Gewicht: Voiturettes, leichte Wagen und schwere Wagen; nach dem Zweck: Rennwagen, Tourenwagen, Lieferungswagen und Lastwagen. Am üblichsten ist die Gruppierung nach der Art der motorischen Kraft, die auch hier gewählt worden ist.

Am verbreitetsten und technisch am vollendetsten sind die Benzinwagen; alle andern Gattungen von Wagen sind ihnen, soweit möglich, nachgebildet. Die Hauptbestandteile des Benzinwagens (Gaswagens) bilden das Gestell mit dem maschinellen Teil und der vom Gestell vollkommen unabhängige Wagenkasten (Carosserie). Einen wichtigen Teil, gleichsam das Skelett des Gestelles, bildet der aus Längs- und Querträgern zusammengesetzte Rahmen, an dem die Federn mit den Achsen sowie der Maschinenkomplex befestigt sind. Je nach dem Material, aus dem er hergestellt ist, unterscheidet man: eisenarmierte Holzrahmen, die an den Ecken mittels Bolzen, Zapfen und Winkeleisen zusammen gehängt sind; Rahmen aus gepresstem Stahlblech, bei denen die Längsträger durch zwei oder mehrere Querträger verbunden sind, Rahmen aus profilierten Stahlträgern, deren Längsträger aus Walzeisen von geeignetem Querschnitt durch angenietete Querstücke verbunden sind, Rahmen aus Stahlrohren, die verschweißt, bez. hart gelötet und mit Stahlbolzen gesichert sind. Am meisten findet man heute den Rahmen aus U-förmigen Stahlträgern. In den Vorderteil des Rahmens ist der Motor eingebaut, weil er hier den Steuerungsmechanismus günstiger belastet, leicht zugänglich ist und den Konstrukteur nicht zwingt, den Sitz unangemessen hoch zu legen, was eine Verminderung der Stabilität zur Folge hätte. Im Motor werden mit Luft gemischte Benzindämpfe entzündet und zur Explosion gebracht, wodurch der Zylinderkolben bewegt wird. Die Verwendung von Spiritus (Spirituswagen) hat, so bedeutsam sie auch wäre, nur geringe Verbreitung gefunden; auch mit Petroleum (Petroleumwagen) und Heißluft (Heißluftwagen) sind keine nennenswerten Erfolge erzielt worden. Der Benzinmotor ist durchweg ein Viertaktmotor, d.h. nach jeweils vier Huben erfolgt ein neuer Kraftimpuls. Die zur Regelung des Gaseintritts erforderlichen Ventile sind heute ebenso wie die Austrittsventile durchweg gesteuert, d.h. ihr Öffnen erfolgt durch eigenartig geformte Nocken, die auf einer besonderen Steuerwelle sitzen und die Ventilkegel zu ganz bestimmten Zeitpunkten heben; das Schließen erfolgt durch Federdruck. Bezüglich der Zylinderzahl des Motors geht die Tendenz dahin, den Einzylinder durch zwei- und vierzylindrige, ja fünf-, sechs- und selbst achtzylindrige Motoren zu ersetzen, denn bei mehreren Zylindern werden die durch die Explosionen hervorgerufenen Erschütterungen am vollkommensten kompensiert, wodurch ein sehr ruhiger und weicher Gang erzielt wird. Da der Motor in unbelastetem Zustand anläuft, bez. angedreht werden muss und da die Widerstände während der Fahrt sehr veränderlich sind, besteht die Gefahr, dass er eine die normale Tourenzahl weit übersteigende Geschwindigkeit annimmt. Um dies zu vermeiden, ist ein Regulator vorhanden, der gewöhnlich so konstruiert ist, dass er eine Füllungsänderung des Zylinders bewirkt.

Zur Erzeugung des explosiven Gemisches von Benzindampf mit einer entsprechenden Menge Luft bei geringer Belastung ist ein Vergaser vorhanden, der das Benzin in Gasform überführt und das Gas mit Luft vermischt. Er steht durch das Gaseinströmungsrohr in Verbindung mit dem Motor und erhält zur Erzielung einer vollkommenen Gasbildung die Wärme der Auspuffgase oder des Kühlwassers zugeführt. Die heute verwendeten Vergaser sind fast durchweg Einspritzvergaser: aus dem Behälter a fließt das Benzin durch die Röhre b und dem Stutzen c nach dem Raum d, dessen Schwimmer mit dem Nadelventil derart in Verbindung steht, dass sich das letztere schließt, sobald der Schwimmer durch das eintretende Benzin gehoben wird, und umgekehrt. Von d fließt das Benzin durch das Röhrchen h und wird von der aus dem Röhrchen k kommenden Luft mitgerissen und gegen den Zerstäuber i geworfen. Das Gemenge von Benzindampf und Luft gelangt durch das Einströmungsrohr 1 und das Einlassventil nach dem Motorzylinder, woselbst es durch Zündung, die sich alle vier Hübe wiederholt, zur Explosion gebracht wird.

Ganz allgemein wendet man elektrische Zündung an, da diese, entgegen der früheren Glührohrzündung, höhere Betriebssicherheit bietet und in einfachster Weise die Veränderung des Zündungsmoments und damit die Regulierung der Motorgeschwindigkeit gestattet. Bei der Akkumulatoren- oder Batteriezündung wird der Strom der Akkumulatoren durch einen Induktionsapparat in einen Strom von entsprechend hoher Spannung übergeführt.

Fig. 1–3. Magnetelektrischer Zündungsapparat.

Die Schließung und Öffnung des Stromes geschieht durch eine von der Motorwelle aus bewegte Kontaktfeder; die Explosion erfolgt während des Stromschlusses durch das Überspringen von elektrischen Funken an der Zündkerze, die in den Explosionsraum ragt. Die verhältnismäßig kurze Lebensdauer der Batterie, ihre begrenzte Kapazität etc. bewirkten, dass man neuerdings immer mehr zur magnetelektrischen Zündung übergegangen ist; deren Prinzip ergibt sich aus Textfig. 1–3. Von der Motorwelle aus wird ein Elektromagnet a (Fig. 1) erregt, in dessen Stromkreis der am Zylinderkopf angebrachte Abreißhebel eingeschaltet ist. Der Einsatz a (Fig. 2) trägt isoliert eingeschraubt den Zündnist b, desgleichen den Drehstift c des Abreißhebels g-g1, (Fig. 3); b und c sind an die vom Elektromagnet kommenden Drähte angeschlossen. Der Zündhebel g wird durch die Feder k in der Ruhelage gegen den Stift b gedrückt, was gleichbedeutend mit Stromschluß ist. Zu Beginn des Explosionshubs entfernt die von der Motorwelle bewegte Stange f die Stange g von dem Stift b, so dass der Stromkreis geöffnet wird und ein kräftiger Abreißfunke zwischen b und g überspringt. Die Kraft der Feder k stellt den Stromschluß wieder her.

Fig. 4. Kühlvorrichtung.

Der Abreißmechanismus der elektromagnetischen Zündung bedingt wegen der erforderlichen Stangen- u. Hebelverbindung und der Durchlöcherung des Zylinderkopfes mancherlei Missstände mit sich; man hat deshalb vielfach wieder zur Zündkerze gegriffen, hat sie aber, zur Vermeidung der Batterie, mit dem Elektromagnet kombiniert. Zur Erzielung der für die Zündkerze nötigen hohen Spannung sind von Bosch, Eisemann u.a. Konstruktionen ersonnen worden, die sich zahlreicher Anhänger erfreuen.

Um die durch die Explosionen erzeugte Wärme unschädlich zu machen, ist der Zylinder von einem von Kühlwasser durchströmten Hohlraum umgeben. Das erwärmte Wasser passiert einen Kühlapparat, der in den Vorderteil des Wagens verlegt ist, um den dort sich entwickelnden starken Luftzug während der Fahrt zur Kühlung des Wassers auszunutzen. Die Wasserzirkulation wird heute fast durchweg durch eine Pumpe bewirkt; das Thermo-Siphonprinzip, bei dem die Wasserzirkulation durch Verwendung der Eigenschaft des warmen Wassers, leichter zu sein als kaltes, erzielt wird, findet heute nur noch bei einigen Systemen Anwendung. Textfig. 4 zeigt das Schema einer häufig verwendeten Kühlungseinrichtung: durch den Zylindermantel a wird durch die Pumpe b das Kühlwasser nach der Rückleitung c getrieben, an dessen oberster Stelle sich die Nachfüllungsöffnung d befindet; von c aus fließt das Wasser in das Gefäß g, in das eine Röhre h mündet, die den etwa sich bildenden Dampf ableitet, während das Wasser durch den Kühlapparat i wieder der Pumpe b zufließt, um von neuem seinen Kreislauf zu beginnen. Der Kühlapparat selbst wurde früher ausschließlich als Schlangenkühler gebaut, danach ging man zum Röhrenkühler über, der ein Kühlwassergefäß besitzt, dessen Vorder- und Hinterwand durch zahlreiche Kanäle miteinander verbunden sind; um diese Kanäle fließt das Kühlwasser von oben nach unten, während durch die Kanäle ein Luftzug streicht. Da die Röhrenkühler infolge der vielen Lötstellen sehr leicht undicht werden, ist man neuerdings wieder davon abgekommen und bevorzugt eine Kombination von Schlangenkühler und Röhrenkühler, als deren gelungenster Repräsentant der Adlerkühler zu betrachten ist. Dieser besteht (Textfig. 5 u. 6) aus flachen, langgezogenen, nahtlosen, vertikalen Röhren a, durch die das Wasser geführt wird und die ihrer ganzen Länge nach in bestimmten Abständen von lustumströmten Rippen b durchquert sind.

Fig. 5 und 6. Adlerkühler.

Da der Fall eintreten kann, dass der Wagen längere Zeit hält, ohne dass der Motor abgestellt wird, oder aber, dass der Motor angestrengt arbeitet und sich nur langsam von der Stelle bewegt, z. B. beim Bergfahren, dass also kein Luftzug wie bei normaler Fahrt stattfindet, so hat man den Kühlapparat mit einem Ventilator versehen, der, sobald der Motor läuft, energisch Luft ansaugt und dadurch kühlend auf das Wasser wirkt.

Die Schmierung des Motors erfolgt gewöhnlich automatisch durch eine Ölpumpe, die das Öl aus dem am Zylinderkopf befindlichen Reservoir nach den verschiedenen Tropfölern des Zentralschmierapparats führt. Dieser ist sichtbar an der vorderen Querwand des Wagens angebracht, so dass vom Führersitz aus jederzeit das Funktionieren der Ölpumpe kontrolliert werden kann.

Unmittelbar hinter dem Kurbelgehäuse ruht auf der Welle der Hauptachse zur Kompensation der Kraftimpulse das Schwungrad. Es ist meist als Kuppelung ausgebildet, die durch einen Fußhebel vom Führersitz aus betätigt wird. An die Kuppelung schließt sich das Geschwindigkeitsgetriebe an; dies besteht aus einem Gehäuse mit zwei Achsen, von denen die eine festsitzende, die andre in der Achsrichtung verschiebbare Zahnräder trägt, durch deren Einschaltung vom Führersitz aus die Geschwindigkeit des Motors auf die Hinterradachse des Wagens übertragen wird. Gewöhnlich sind drei Vorwärtsgeschwindigkeiten und ein Rückwärtsgang vorgesehen. Bei der größten Geschwindigkeit wird die Motorwelle direkt mit der Kegelradwelle der hintern Radachse verbunden, und zwar durch Einschaltung des Schieberades b (b-c ein Stück), das in Keilnute auf der Bremswelle geführt ist, in das mit dem Motor direkt gekuppelte Rad a, derart, dass die rechte Hälfte von a in die innere Verzahnung des Rades b eingreift; die mittlere Geschwindigkeit ergibt sich durch die Kraftübertragung von a auf a., bez. b, (b, -a, ein Stück) und von b, auf b; die kleinste Geschwindigkeit durch die Übertragung von a auf a, bez. c, (c, -a, ein Stück) und von c, auf c. Der Rückwärtsgang wird dadurch erreicht, dass die Energie von a auf a., bez. d (d-a, ein Stück) und von hier durch Einschaltung eines Zwischenrades d1 (im Bilde schlecht zu sehen) auf c übertragen wird. Neben dem Zahnradgetriebe wird auch ein Friktions- oder Diskusgetriebe in verschiedenen Variationen angewendet.

Fig. 7. Cardan.

Das Friktionsgetriebe gestattet einen Geschwindigkeitswechsel von beliebiger Abstufung, hat aber den Nachteil, dass es sehr viel Kraft verbraucht.

Fig. 8. Differentialgetriebe.

Die Verbindung zwischen Getriebe und Hinterachse erfolgte früher meist mittels Kette, neuerdings aber häufiger durch Cardan (Textfig. 7), d.h. mittels einer an ihren beiden Enden mit Universalgelenken versehenen Welle. Solche Gelenke sind erforderlich, weil Motor und Geschwindigkeitsgetriebe am vorderen Wagenteil auf dem gefederten Rahmen ruhen, während bei der Hinterradachse diese Federung nicht vorhanden ist, infolgedessen sich zwischen den beiden zu verbindenden Punkten Verschiebungen ergeben, denen durch die Cardane Rechnung getragen werden muss. Mit Hilfe der Cardanwelle und von Winkelrädern wird die Energie des Motors schließlich nach der Hinterradachse (Textfig. 8, S. 189) geleitet, hier durch Anwendung eines Differentialgetriebes auf die Laufräder übertragen und damit der Wagen fortbewegt. Das Differentialgetriebe hat. die Kraft des-Motors auf die beiden Laufräder gleichmäßig zu übertragen, auch wenn der Wagen in einer Kurve läuft, d.h. die Geschwindigkeit der Räder eine verschiedene ist.

Fig. 9. Achsschenkelsteuerung.

Fig. 10. Pivotsystem.

Fig. 11. Gabelsystem.

Die Lenkung des Motorwagens erfolgt mit Hilfe der Achsschenkelsteuerung (Textfig. 9), d.h. durch Schrägstellung der Vorderräder. Wie aus der Figur ersichtlich, ist bei der Achsschenkelsteuerung die Vorderradachse fest mit dem Rahmen verbunden und trägt an beiden Enden je einen Zapfen, um den sich die Achsschenkel mit den Vorderrädern drehen; der Hebelarm ist hier im Gegensatz zum Lenkschemel ein sehr kurzer; er beträgt nur wenige Zentimeter.

Fig. 12. Der Steuerungsmechanismus.

Die Anordnung der Achsschenkel selbst erfolgt entweder nach dem Pivot (Textfig. 10) oder nach dem Gabelsystem (Textfig. 11).

Einen Einblick in die Wirkungsweise des gesamten Steuerungsmechanismus gibt Textfig. 12. Der selbsthemmende Mechanismus, Schnecke oder Schraube, hat die Eigenschaft, dass wohl eine Drehung beispielsweise der Schnecke zum Schneckenrad, nicht aber umgekehrt möglich ist; die Hände und Arme des Fahrers sind daher den von Unebenheiten der Straße herrührenden Stößen nicht ausgesetzt. Heute wird immer mehr an Stelle des Zahnsegments eine Schraubenhülse verwendet, weil dadurch die Stöße sich auf eine weit größere Fläche ausdehnen.

Fig. 13. Schalldämpfer.

An der Steuersäule, über oder unter dem Steuerrad, befinden sich gewöhnlich drei kleine Hebel, die zur Einstellung der Zündung, der quantitativen und der qualitativen Regelung des Gasgemisches dienen.

Fig. 14. Voiturette.

Fig. 15. Phaethon.

Fig. 16. Tonneau.

Vielfach auch an der Steuersäule, meist aber seitlich am Wagen, ist der Geschwindigkeitshebel angebracht; er ist mit einer Sperrklinke versehen, die jeweils in einen der vier Einschnitte des Segments, die den verschiedenen Einschaltungen der Zahnräder im Geschwindigkeitsgetriebe entsprechen, eingreift.

Jeder M. besitzt gewöhnlich drei Bremsen, und zwar eine, die meist als Bandbremse auf die Hauptwelle einwirkt und durch einen Fußhebel vom Führersitz aus betätigt wird, und zwei auf die Hinterradachse wirkende Bremsen, – die als Innen- oder Außenbremse ausgebildet sind. Erwähnenswert ist schließlich noch der Schalldämpfer (Textfig. 13), der die Aufgabe hat, die beträchtliche Spannung der Auspuffgase herabzumindern und damit das Geräusch zu vermeiden. Er besteht vielfach aus einigen durchlochten konzentrischen Trommeln, welche die Auspuffgase bei ihrem Austritt passieren müssen.

Während man früher mit Vorliebe Drahtspeichenräder verwendete, findet man solche heute nur noch bei billigen Wagen; bei allen andern gelangen Holzräder zur Verwendung. Diese laufen, ebenso wie alle höherem Druck ausgesetzten Lagerstellen, in Kugellagern, wodurch die gleitende Reibung in eine rollende verwandelt wird und der Kraftverlust auf ein Minimum herabsinkt. Jeder M., der einigermaßen schnell laufen soll, muss mit Luftgummireifen (Pneumatiks) versehen sein. Ein solcher besteht gewöhnlich aus einem dünnwandigen Luftschlauch, der von einem Laufmantel umgeben ist; letzterer wird um das Rad gespannt und verleiht ihm einen sehr elastischen Gang. Das Streben der verschiedenen Fabriken geht dahin, größte Elastizität, größte Dauerhaftigkeit, einfachste Montage und Fortfall der Gleitgefahr zu erzielen. Massive Gummireifen sind nur bei Wagen mit minderer Geschwindigkeit zulässig, wie bei Lastwagen, Omnibussen etc.

Die Karosserieformen haben sich zwar aus der Wagenform der gewöhnlichen Pferdewagen entwickelt, sind aber sehr rasch immer mehr davon abgerückt, so dass sie heute als spezifisch geartete Formen gelten können. Dieses völlige Abrücken von der alten Wagen form ist bedingt durch die Eigenart des Chassisbaues. Um die Insassen vor Regen und Wind zu schützen, werden neuerdings mit Vorliebe Verdecke angeordnet, deren seitlich, vorn und rückwärts angebrachten Glasfenster leicht entfernt werden können. Die Textfiguren 14–16 geben die schematische Darstellung einiger gebräuchlicher Karosserieformen. Fig. 14 zeigt eine Voiturette für zwei Personen nebst einem Rücksitz. Eine sehr beliebte Form ist das Phaethon (Fig. 15), das sich vieler Anhänger erfreut und nächst dem Tonneau (Fig. 16) wohl die verbreitetste Form im Karosseriebau ist; man kann darin seitwärts, vorwärts oder in der Diagonale sitzen; der Einstieg, früher hinten angeordnet, ist heute fast durchweg ein seitlicher. Ein Tonneau mit Überkasten und seitlichem Abschluss mit Glasfenstern heißt Limousine. Neben diesen Karosserieformen kommen noch in Betracht: das Landaulette, Coupé, Duc etc.

Lieferungswagen nennt man Fahrzeuge für kleinen Lastentransport mit einer Ladefähigkeit bis ca. 1000 kg und einem geschlossenen Wagenkasten. Sie dienen vornehmlich den großen Geschäftshäusern zum Ausfahren von Waren an die Kunden. Die Bereifung besteht aus Luftgummi- oder Vollgummireifen, bisweilen auch aus Eisen. Motorstärke 6–15 Pferdekräfte, Eigengewicht ca. 1000–1500 kg Lastwagen. Als normale Höchstgrenze der Belastung können 6000 kg angesehen werden. Sie dienen zum Transport von Lasten aller Art. Am häufigsten bedienen sich ihrer zurzeit noch die Großbrauereien. Solche Fahrzeuge werden mit Motoren von 10–30 Pferdestärken ausgerüstet, Höchstgeschwindigkeit bei Eisenreifen 12–14 km in 1 Stunde. Hierher gehören auch die sogen. Schleppwagen für Vorspanndienste.

Omnibusse. Wagen zur Aufnahme von 6–24 und 30, selbst 50 Personen für Stadt- und Überlandverkehr. In der äußern Form entspricht der Wagenkasten vielfach dem alten Postomnibus, im Innern ist er jedoch geräumiger wie dieser.

Fig. 17 und 18. Dampfwagen System Altmann.

Motorstärke ca. 10–30 Pferdestärken, Höchstgeschwindigkeit 18–25 km.

Motordroschken. Wagen für öffentlichen Verkehr von ca. 10–15 Pferdestärken, mit gewöhnlich offener Wagenform, die in einfacher Weise in eine halboffene und geschlossene Form verwandelt werden kann; meist mit Taxameter ausgerüstet, der links hinter dem Führersitz angebracht ist.

Rennwagen. Wagen von besonders großer Schnelligkeit. Da bei einem solchen Fahrzeug jede Schraube, jeder Bolzen, kurz das kleinste Detail bis auf das äußerste beansprucht wird, wenn der Wagen in vollem Tempo fährt, so dient der Rennwagen als Prüfstein auf Zuverlässigkeit der Konstruktion und Güte des Materials. Ihrem Zweck entsprechend sind die Rennwagen leicht und niedrig gebaut, besitzen einen großen Radstand, weit auseinanderstehende Räder; alle entbehrlichen Bestandteile sind fortgelassen. notwendige, aber unwichtige, wie beispielsweise die Karosserie, sind so gestaltet, dass ihr Gewicht und Luftwiderstand auf ein Minimum reduziert wird. Wie hoch man in der Stärke des Motors noch kommen wird, lässt sich nicht sagen. Der heutige 120pferdige Mercedes wird, sofern die Rennen fortdauern, noch nicht die höchste Stärke bedeuten. In der Tat hat man neuerdings einen achtzylindrigen Rennwagen von 200 Pferdekräften gebaut, der 1 km in 20,5 Sekunden bewältigte.

Dampfwagen (Dampfdroschke, -Kalesche, -Kutsche-, -Omnibus). Während bei Benzinwagen die wesentliche Anordnung der einzelnen Teile: Motor, Kuppelung, Geschwindigkeitsgetriebe etc., übereinstimmend ist, tastet man hinsichtlich der zweckmäßigsten Anordnung der Hauptbestandteile des Dampfwagens: Kessel, Speisewasserreservoir, Motor, Kraftübertragung auf die Hinterradachse, Brennmaterialreservoir etc., noch im Dunkeln. Serpollet ordnet den Kessel am Hinterteil des Wagens an, White unter dem Vordersitz, die Albany Manufacturing Co. am vorderen Wagenteil. Die Textfiguren 17 und 18 zeigen Aufriss und Grundriss des Altmannschen Dampfwagens; a bedeutet den Kessel, b die Dampfmaschine, c den Kühler. d und e sind Wasserbehälter, von denen der eine für Dampf-, der andre für Kühlzwecke dient, f ist der Brenner für die Dampferzeugung.

Zu den schwierigsten Aufgaben des Dampfwagenbaues gehört die Konstruktion des Dampferzeugers nebst Brenner. Von den Dampferzeugern dürfte wohl das System Serpollet die größte Verbreitung gefunden haben; bei ihm erfolgt die Verdampfung so rasch, dass sich überhaupt kein flüssiges Wasser im Kessel befindet (Blitz- oder Augenblicksverdampfer). Unter den Brennern hat sich das Tellersystem viele Anhänger erworben; der aus dem Brennmaterial gebildete Strahl strömt aus einer Düse und reißt Luft mit sich, das Gemisch wird alsdann in einen eigenartig ausgebildeten Hohlraum derart geführt, dass ein Gasherd von intensivster Wärmewirkung entsteht.

Elektrische Wagen (Elektromobile, Akkumobile, Akkumulatorwagen, elektrische Droschke) erhalten ihre Kraft aus einer Akkumulatorenbatterie, von der aus die elektrische Energie zunächst nach dem am Führersitz angeordneten Kontroller geleitet wird, einer Vorrichtung, mittels der die Geschwindigkeit des Wagens beliebig verändert werden kann und die außerdem als Bremse dient. Vom Kontroller aus strömt die Elektrizität nach dem Elektromotor, der gewöhnlich unter dem Wagen angebracht ist und seine Bewegung mittels Zahnradvorgeleges auf die Hinter- oder auch Vorderradachse überträgt. Da der Elektromotor bekanntlich bei kleiner wie bei großer Umdrehungszahl gleich vorteilhaft arbeitet, so bedarf es, ebenso wie beim Dampfwagen, keines Zahnradgetriebes zur Veränderung der Geschwindigkeit. Diesen bestechenden Vorzügen des elektrischen Wagens steht der Nachteil gegenüber, dass das Gewicht der Akkumulatorenbatterie allein schon eine sehr hohe tote Last bedeutet (gewöhnlich 300–500 kg), die wiederum eine schwere Wagenkonstruktion bedingt, dass weiterhin die im Akkumulator aufgespeicherte Energie nur für eine verhältnismäßig kurze Fahrt ausreicht und dass die Lebensdauer der Platten sehr kurz ist. Neuerdings baut man auch Elektromobile mit gemischtem Betrieb und solche mit elektrischer Kraftübertragung; die ersteren besitzen als Energiequelle einen Benzinmotor, der eine Dynamomaschine antreibt, an deren Klammern eine Akkumulatorenbatterie und die Elektromotoren angeschlossen sind; die Einrichtung ist so getroffen, dass etwaige Fahrtunterbrechungen zum Laden der Batterie zu benutzen sind. In dieser Anordnung sind alle Vorzüge des elektrischen Antriebs verbunden mit denen einer Akkumulatorenbatterie, von großem Aktionsradius. Diesen Vorzügen steht das große Eigengewicht des Wagens, die aufmerksame Beobachtung der elektrischen Meßapparate, ein teurer Betrieb infolge des Umwegs, den die Energie bis zu ihrer Verwendung macht, u.a.m. gegenüber. Die Elektromobile mit elektrischer Kraftübertragung besitzen denselben Antriebsmechanismus wie die vorbeschriebenen, nur fällt die Batterie weg, so dass die vom Explosionsmotor erzeugte Energie direkt und vollständig in Form des von der Dynamomaschine erzeugten Stromes den Elektromotoren zugeführt wird. Ein System, das neuerdings viel gebaut wird, verwertet die Vorzüge des Elektromotors, also geräuschlosen, ruhigen Gang, leichte Regulierbarkeit innerhalb zweier weitauseinanderliegender Geschwindigkeitsgrenzen, ohne den schweren Akkumulator mit seinen unangenehmen Eigenschaften mitzuführen.

Im gewissen Sinn ebenfalls zu den Elektromobilen zu zählen sind die Systeme mit Oberleitungsbetrieb. Der Wagen (amtlich Kraftwagen mit Oberleitung genannt) läuft ohne Schienen auf der gewöhnlichen Landstraße und erhält die zur Fortbewegung nötige Kraft durch eine an der Straße entlang gehende elektrische Leitung. Da die Schienen fehlen, ist eine zweite Leitung für die Rückleitung des Stromes erforderlich. Derartige Anlagen (Autobahnen, Autobahnen, gleislose Bahnen) eignen sich in erster Linie zur Aufrechterhaltung eines geregelten Betriebes zwischen kleinen Gemeinden untereinander oder mit nächstgelegener Eisenbahnstation. Auch zur Materialienbeförderung für Fabriken, Bergwerke etc., wo es sich hauptsächlich um den Verkehr innerhalb bestimmter Grenzen handelt, haben sie sich bewährt.

Leistungen. Wie eingangs erwähnt, stehen heute die Benzinwagen technisch sowohl als an Zahl an erster Stelle; wohl ca. 95 Proz. aller M. des Kontinents dürften Benzinwagen sein. Die Ursachen, die dem Benzinwagen gegenüber den andern Systemen ein so großes Übergewicht verschafften, waren neben billigem Betrieb seine große Zuverlässigkeit und die Möglichkeit, sehr große Geschwindigkeiten entwickeln zu können. Vermöge dieser Eigenschaften ist der Benzinwagen geeignet, insbes. da in Funktion zu treten, wo es sich um die Zurücklegung großer Strecken und um die Entfaltung großer Geschwindigkeiten handelt. Den Dampfwagen hat man längst besondere Aufmerksamkeit zugewendet, ohne jedoch entsprechende Erfolge erzielt zu haben. Als Vorteile gelten, dass die Konstruktion verhältnismäßig einfach ist und die Kraft sich beliebig steigern lässt etc. Dem steht aber der Nachteil gegenüber, dass der Betrieb bei den meisten Systemen sich zu teuer stellt. Das Gebiet, auf dem sich dem Dampfwagen Aussichten eröffnen, dürfte der Lastwagenbau für landwirtschaftliche und militärische Zwecke sein. Die Elektromobile sind in ihrer Verbreitung infolge der hohen Elektrizitätspreise in unsern Städten, ihrer geringen Geschwindigkeit, der raschen Erschöpfung ihrer Ladung, dem Mangel an Ladestationen etc. sehr zurückgehalten worden; selbst die Elektromobile sogen. gemischten Systems, also mit Explosionsmotor, Elektromotor, Akkumulatorenbatterie, haben bis jetzt nur verhältnismäßig geringe Verbreitung gefunden.